
Vrije Universiteit Brussel
Faculty of Sciences - Department of Computer Science

Semantic Technology and Applications Research
Laboratory

Academic Year 2002 - 2003

SREVI
N

U

ITEIT

E
JI

R
V

B
R

U
S

S
E

L

ECNI
V

RE
T

E
N

E
B

R
A

S

AI

T
N

E
I

C
S

Checking Consistency
of Ontological Commitments

by Employing an
Inference Engine

Kurt Hoorne

Thesis submitted in partial fulfillment of the requirements for the
degree of Licentiaat in de Informatica

Promoter: Prof. Dr. Robert Meersman

Abstract

An ontological commitment can be defined as the formalization of an ontol-
ogy, thus consisting of the agreed terminology and the imposed constraints. To
ensure that a commitment is consistent, i.e. mainly that an instantiation is pos-
sible and that there are no concepts that remain empty for every instantiation,
some verification algorithms are required.
In this thesis the applicability of rule engines and inference engines to solve
this problem with respect to the DOGMA ontology system is explored, thereby
presenting a formal translation between binary ORM (expressed in the new
Omega-RIDL ontology language) and the SHIQ description logic.
Furthermore we present the integration of the RACER inference engine into
the DOGMA framework to automatically check the consistency of ontological
commitments.

Acknowledgements

First of all, I would like to thank Prof. Dr. Robert Meersman for giving me
the opportunity to have taken part in the exciting (though sometimes confus-
ing) early phases of a promising ontology system and the foundation of a new
language. That has been quite a unique experience.

I also want to thank Pieter Verheyden, Pieter De Leenheer, Jan De Bo, Pe-
ter Spyns and the other people at STARLab for their views and remarks that
helped me to constitute this thesis.

A special thanks goes out to my parents for continually supporting me dur-
ing the past tumultuous years.

Finally, peace out to my friends and all true soul musicians out there for
keeping me going.

i

ii

There is a certain rule that applies to all things in life: success demands com-
mitment. This is generic knowledge to be treasured.

Contents

1 Introduction 1
1.1 Goal . 2
1.2 Overview . 2

2 Ontological Commitments 3
2.1 Introduction . 3
2.2 The DOGMA System . 3

2.2.1 Ontology Base . 3
2.2.2 Ontological Commitment Layer 4
2.2.3 DOGMA Modeler . 5
2.2.4 ORM-ML . 6

2.3 Omega-RIDL . 7
2.3.1 Origin . 7
2.3.2 Why define a new ontology language 8
2.3.3 Some example commitments 9
2.3.4 Benefits . 10
2.3.5 Usage . 10
2.3.6 Consistency Problems . 11

2.4 Notes . 12
2.4.1 Bridging Commitments 12
2.4.2 Omega-RIDL-ML . 13

3 Inference Engines vs. Rule Engines 14
3.1 Introduction . 14
3.2 Description Logics . 14

3.2.1 Introduction . 14
3.2.2 Mapping Omega-RIDL to Description Logic 15
3.2.3 SHIQ and SHOIQ . 16

3.3 Description Logic Programming 18
3.4 Constraint Logic Programming 18
3.5 A-Box vs. T-Box Reasoning . 19
3.6 Open World Assumption . 19
3.7 Rule Engines . 20

3.7.1 Basics . 20
3.7.2 Prolog . 20
3.7.3 CLIPS . 20
3.7.4 JESS . 21
3.7.5 Other Rule Engines . 22

iii

CONTENTS iv

3.7.6 Summary . 22
3.8 Inference Engines . 23

3.8.1 Basics . 23
3.8.2 FaCT . 23
3.8.3 RACER . 23
3.8.4 Tableau Algorithms . 24
3.8.5 Summary . 24

3.9 Conclusion . 25

4 Verification of Ontological Commitments 26
4.1 Problem Definition . 26

4.1.1 Introduction . 26
4.1.2 Omega-RIDL Compiler 27
4.1.3 DOGMA Contexts . 27

4.2 Existing Ontological Consistency Checkers 27
4.2.1 ConsVISor . 27
4.2.2 DISCOVER . 27
4.2.3 i-com . 27

4.3 Consistency Checking with the RACER Inference Engine 28
4.3.1 RACER Basics . 28
4.3.2 Integration into DOGMA 28
4.3.3 Omega-RIDL-to-RACER Mapper 29
4.3.4 Inconsistency Analysis . 36
4.3.5 A Sample Translation . 37
4.3.6 RICE: Graphical T- and A-Box Viewing 41
4.3.7 Decidability and Performance 43

4.4 Supporting A-Box Conditionals: Rule Engines Revisited 43
4.5 Incremental Consistency Checking 44
4.6 Future Work . 44

5 Conclusion and Future Work 45
5.1 Conclusion . 45
5.2 Future work . 46

A Description Logic: SHIQ Semantics 51

B Translation of Binary ORM into SIQ 52

List of Figures

2.1 Example ontology . 5
2.2 Omega-RIDL commitment - Example 1 - ORM view 9

4.1 Integration of RACER into DOGMA 29
4.2 A music catalogue ontology - binary ORM diagram 39
4.3 A music catalogue ontology - RICE screenshot (T-Box view) . . 41
4.4 A music catalogue ontology (extension) - RICE screenshot 42

v

List of Tables

2.1 Omega-RIDL commitment - Example 1 9
2.2 Omega-RIDL commitment - Example 2 10

3.1 Classification of Description Logic Languages 16
3.2 Omega-RIDL translated into JESS-rules 22

4.1 RACER Concept and Role Constructors 28
4.2 T-Box translation of Omega-RIDL to RACER input 30
4.3 RACER Concrete Domain Constructs 33
4.4 A music catalogue ontology - DOGMA lexons 37
4.5 A music catalogue ontology - Omega-RIDL commitment 38
4.6 A music catalogue ontology - RACER T-Box terminology 40
4.7 A music catalogue ontology (extension) - Omega-RIDL commit-

ment . 42
4.8 A music catalogue ontology (extension) - RACER T-Box termi-

nology . 42

A.1 Semantics of SHIQ concept & role constructors 51

B.1 Binary ORM translated to SIQ 52

vi

Chapter 1

Introduction

Originally a research domain in philosophy, the field of ontologies has gained
growing attention from the IT community, especially with respect to the seman-
tic web. In computer science, and the field of information systems in particular,
the word ontology is defined as “terminology for a certain domain agreed on by
domain experts”. The conceptualization of the real world and the identifica-
tion of all relevant relationships between them has proven to be a flexible and
scalable way to build a correct and corresponding data model. In the past this
conceptual modeling task was performed for one individual information system,
but now researchers are taking it one step further by constructing ontologies to
use them as a sort of generic, ideally universally agreed building blocks with
which one can design better interoperable and/or more standardized applica-
tions. Basically, ontologies only consist of a terminology of concepts that are
interrelated, which implies that, in order to meet the specifications of a certain
system (one could even consider the case of adding semantics to web pages),
constraints need to be supplied.

An ontological commitment according to Guarino et al [44] is stated as the
following: “Formalizing the ontological commitment of a logical language means
offering a way to specify the intended meaning of its vocabulary by constraining
the set of its models, giving explicit information about the intended nature of the
modeling primitives used and their a priori relationships. In this sense, an on-
tological commitment is a mapping between a language and something which can
be called an ontology.” This might sound a bit too abstract for some to directly
apprehend, but it totally complies with what we shall define as an ontological
commitment in the DOGMA system. It should already be obvious that with-
out an ontological commitment, i.e. without any restrictions on the data, an
ontology has no useful meaning for any application. Hence a formally defined
connection between the conceptual, non-lexical model that is an ontology and
the lexical nature of any software system is indispensable. By committing to
an ontology applications can be made interoperable in case they (partly) share
the same constraints or they can individually be made compliant to a certain
standardized data model provided by some ‘certified’ ontology service.

Unfortunately, formulating ontological commitments is not a trivial occupa-
tion because inconsistencies can frequently occur: one can constrain an ontology

1

CHAPTER 1. INTRODUCTION 2

in such a way that it includes concepts and/or relationships that are proven to
remain empty for every possible instantiation. This of course is caused by includ-
ing redundant concepts and/or by imposing ill-defined, conflicting constraints
inside a commitment. Normally, it is considered the responsibility of the mod-
eling engineer to remove all redundancies and inconsistencies from the designed
model. In general, this can become an extremely time-consuming task since
commitments can be considerably large. Furthermore, there is no guarantee
that all inconsistencies will be manually detected.
Instead of implementing a set of self-defined verification algorithms it seemed in-
teresting to investigate the usability and compatibility of third-party reasoning
services, which we shall explore in the following chapters.

1.1 Goal

The main goal of this thesis is to clarify what DOGMA ontological commit-
ments exactly are, how they are built, and how they can be verified. To get a
better understanding, we will talk about ontologies in the DOGMA system, the
connections with description logics together with some related paradigms and
existing tools that pursue the consistency checking of ontological commitments
or constrained terminologies in general.

1.2 Overview

Chapter 2 gives an overall picture of the DOGMA system, the framework in
which we shall define and apply ontological commitments. It also contains the
introduction to Omega-RIDL, a new ontological commitment language.

In Chapter 3, we examine the use for DOGMA of two distinct sorts of systems
called rule engines and inference engines, thereby discussing the fundamentals of
description logics, which are prerequisite to understand the different mechanisms
applied.

Chapter 4 describes the proposed integration of the RACER inference engine
into DOGMA, including a translation mapping from binary ORM facts and
constraints to the SHIQ description logic.

Finally, we will state our conclusions and summarize some relevant topics of
future work.

Chapter 2

Ontological Commitments

2.1 Introduction

In this chapter we shall explain the DOGMA system, which is being developed
at STARLab, focusing on the components related to ontological commitments.
We will start off with a description of the global system itself, and then we will
present a new language to express ontological commitments called Omega-RIDL,
discussing its features.

2.2 The DOGMA System

The DOGMA (Developing Ontology-Guided Mediation of Applications) system
embodies an expanding framework of tools with which one can develop, apply,
process and convert ontologies. It currently stores ontologies by means of two
layers: an ontology base for storing elementary facts with an commitment layer
storing sets of constraints on top of it. These will now be explained a little more
in detail, succeeded by some information on DOGMA modeler, an ontology
editing and browsing tool, and ORM-ML, a markup language used to store
and exchange ontological commitments. For a more exhaustive explanation of
DOGMA we refer to [9] and [10].

2.2.1 Ontology Base

The ontology base stores a large collection of elementary and binary facts called
lexons. Each lexon defines a relationship (labeled by a rolename) between two
concept terms and is of the following form:

<context><term1><role><co-role><term2>

The co-role expresses the inverse relation between the two concept terms so
it becomes redundant to add the ‘inverse’ lexon.

The context term tells in which context its bound fact is located, e.g. the
domain of literature, politics, the fauna of southern Africa, . . .
Contexts render the ontology base more scalable and easier to reference. A wide
range of dedicated literature is available and in the making, however contexts

3

CHAPTER 2. ONTOLOGICAL COMMITMENTS 4

of no real concern inside this topic as we will show later on.

Lexons define the static part of an ontology, e.g. “Person has Age” and
“Book has Author” represent pieces of atomic knowledge that will not change
over time. Note that subsumptions are stored in the ontology base as ordinary
lexons using a generic subtyping “is-a” role1.

N-ary roles are excluded from DOGMA because of their additional complex-
ity and lesser granularity. An n-ary can always be expressed by using only binary
roles (provided that a complete and correctly corresponding ‘binary’ conceptu-
alization of the domain is available). This is why only binary facts are allowed.

All lexons, as well as all other parts of an ontology are stored onto the
DOGMA server (to a relational database - see [10] for details), and because of
their atomicity, it is not unthinkable that the global lexon base will consist of
thousands (millions) of lexons.

2.2.2 Ontological Commitment Layer

Introduction

Defining an ontology without any rules has little or no use. In order to have an
application making use of an ontology, constraints have to be added.
As opposed to lexons, constraints help express application-specific knowledge,
e.g. “Person has exactly one Age” or “Book has at least one Author”.

By storing these constraints in a separate layer, the degree of reusability
and scalability significantly grows. This commitment layer, as it is called in
DOGMA, forms the bridge between the ontology base and the applications that
commit to it.

An example

To clarify the points we have previously discussed we now present an example
of an ontological commitment in Figure 2.1, showing some constraints on the
generic properties of a website.

Lexons define the graph structure of the ORM (Object-role modeling [1])
conceptual schema, depicted by the named ellipses and their connectors. Be-
cause lexons are exclusively binary, basic DOGMA ontological commitments are
expressed in what we call binary ORM. The constraints are represented through
all other symbols present in the picture.
The two subtypes of Person are shown here in ORM style with the black arrows,
although inside DOGMA these are also lexons connecting a sub- and a super-
type through a globally agreed ”is-a” role. From this point on we will always
present subtypes with this role instead of an arrow.

Also note that this is a fairly simple and small example directly created as
an ORM diagram. In Section 2.3 we will introduce a more powerful formalism
to formulate DOGMA commitments.

1This is maybe not definitive, since there is a lot of academic disagreement on the semantic
difference between instantiation and subsumption of ontological concepts.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 5

Figure 2.1: Example ontology

Definition

In the scope of the DOGMA system, an ontological commitment can be defined
as the formalization of an ontology base that is constrained according to some
Universe of Discourse. Thus a commitment contains in fact both a part of the
ontology base (which is already a formalization in se) and a set of constraints.

The UoD mentioned will mostly be determined by the requirements of a
certain application that commits to DOGMA. The formalization of an ontology
is carried out by expressing it in ORM-ML, or with the new Omega-RIDL
language.

Further on we’ll show that there is absolutely a need to verify these formal-
izations, to have the guarantee that they are correct (read: consistent).

2.2.3 DOGMA Modeler

DOGMA Modeler is the client program connected to the DOGMA server de-
signed to build, update and browse DOGMA ontologies. We give a short round-
up of the features:

• New ontology bases and/or commitments are built by means of a graphical
user interface to construct new lexons and/or add constraints.

• Lexon bases can be browsed and lexons can be drag-and-dropped into the
graphical editor window to define new ontological commitments.

• Commitments can be expressed in pseudo-natural language by verbalizing
all ORM facts and constraints.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 6

• Some basic language-independent meta-schema is implemented to sup-
port multi-linguality: the same ontology can be built and viewed in dif-
ferent languages. This is still a hard issue to overcome [12], so for the
moment DOGMA Modeler only incorporates a simple form of language-
independence.

• Lexons and commitments are stored to the DOGMA server and commit-
ments can also be saved in ORM-ML format (see next section).

The DOGMA Modeler tool is constantly being worked on and updated to
meet the requirements of applications and projects that adopt the DOGMA
methodology. Future implementation plans include support for alignment and
merging of ontologies, support for Omega-RIDL constraints and queries, . . .

2.2.4 ORM-ML

Up till now ontological commitments are stored in ORM-ML files. The ORM
Markup Language [11] is an XML wrapper describing all referenced lexons from
the ontology base as well as the constraints imposed on them. The choice of
this standardized format makes it very suitable to exchange commitments over
the world wide web.

Somewhat unfortunate, ORM-ML was designed to be machine-interpretable,
so it becomes tedious to read as a human user. Despite its verbalization feature
in the DOGMA Modeler tool, it is more appropriate to have a high-level concep-
tual language with which one can directly write down and read commitments.
In that fashion, you have a formalism that is easy to learn and understand by
people who are unfamiliar with the abstractions of traditional programming.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 7

2.3 Omega-RIDL

As we have stated in the previous section, there is undoubtedly a need for an
expressive and high-level constraint formalism. This is where Omega-RIDL fits
in.

2.3.1 Origin

The principles of Omega-RIDL are not new. On the contrary, most of the ideas
date from the late 70’s and early 80’s. We shall now give a brief outline of the
foundations of conceptual information modeling.

ENALIM

ENALIM (Evolving NAtural Language Information Model) was one of the first
proposals introducing the ‘Idea-Bridge’ method, where roles or ‘ideas’ as they
were called, connected non-lexical entity types or concepts and where ‘bridges’
connected non-lexical with lexical entity types.

RIDL

Based on the above ideas came RIDL (Referential IDea Language/Laboratory)
[2], a conceptual query and constraint language that was way ahead of its time,
considering its very high-level nature.
In the beginning of the 80’s a full implementation was developed called RIDL*
[5], a tool for conceptually modeling a relational database. Among other, it
contained a module called RIDL-A which performed basic consistency analysis
of conceptual models.

Furthermore, within the RIDL Shell environment, a subsequent tool, it be-
came possible to perform RIDL queries and updates. The RIDL syntax [2]
allowed the user to textually formulate highly expressive conceptual queries by
paths through the semantic network which was separately presented in a graph-
ical way.

The new Omega-RIDL language, as we will explain further on, is very similar
to RIDL syntax-wise, but it has modified semantics, adapted to the requirements
of an ontology.

NIAM

During the construction of RIDL, the NIAM (Natural Information Analysis
Method) [7] method was developed. It became a well-known standard for the
natural language and AI community.

ORM

ORM (Object Role Modeling) [1] is the current incarnation of the ideas imple-
mented in the languages explained above. Next to binary it also allows n-ary
relationships between concepts and some new additions.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 8

The ORM method provides a graphical constraint representation only (be-
sides a few exceptions) and is primarily used to conceptually design relational
databases.

2.3.2 Why define a new ontology language

The syntax used in DOGMA for storing ontologies was originally based on
binary Object Role Modeling, but experience has shown that existing ORM
constraints are not sufficient, e.g. the declaration of path equivalences (see next
chapter) is unsupported. Also, because ORM was primarily meant to model
relational databases, and not ontologies, specific syntax is missing to capture the
description of an entire DOGMA commitment such as lexical mappings. This
already implies that a higher expressivity must be attained by incorporating
more powerful and complex constructs.

Furthermore, sometimes it is necessary to present the knowledge purely text-
based, because it is not always appropriate to have a graphical representation.
For example, one could be forced to develop an ontology that contains the precise
contents of legal texts. In such a case, it becomes impossible to construct the
ontology graphically.

In addition, an ontological commitment requires a standalone representation
including all referenced lexons from the ontology base, even those that are not
constrained (e.g. subsumption lexons). Therefore we need a complete syntax to
express each component inside a commitment, enabling the users and engineers
to have a coherent view.

Another issue is the notion of contexts, which are of great importance to
combine several ontologies. Of course these are non-existent in ORM. To give
a better idea, a DOGMA context could be seen as an RDF namespace. By
nesting contexts an application can commit to multiple lexon bases, referencing
the concepts it needs. They provide a useful structure for the alignment and
merging of ontologies, a relatively new domain which many researchers are now
working on.

Due to these shortcomings of ORM2, the introduction of a new language was
inevitable.

Instead of adopting an existing ontology language like DAML+OIL [49] and
RDF(S) [50], we chose to build further on the ideas of ORM and RIDL which
stand out for their simplicity in understanding. This is the power of Omega-
RIDL: it is designed from a human or rather linguistic, not from a system point
of view. It stands very close to natural language and is thus a very high-level
paradigm.

Besides writing ontological commitments, Omega-RIDL can also be used to
formulate conceptual queries, just like with the old RIDL and other conceptual
query languages like ConQuer [8]. This of course implies an underlying mapping
between the queried ontology and some information system such as a relational
database. Note that, unless the fact that it is also meant as a conceptual query
language, in this thesis we mainly focus on the constraint (read: commitment)
part of the Omega-RIDL language.

2There has been a proposed constraint language called FORML (Formal ORM Language)
[1], but it does not contain the expressivity we want to implement.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 9

2.3.3 Some example commitments

Example 1 - with graphical ORM-equivalent

∗ ∗ ∗ preliminary Omega-RIDL commitment ∗ ∗ ∗
student information.{

Student has [is of] exactly one Name
Student has [is of] exactly one Student ID
Student takes daily [is taken daily by] at least one Train
Student takes daily [is taken daily by] Train excludes

Student occupies [is occupied by] at most 1 StudentRoom
Student has [of] at least one Hometown
Train rides to [is visited by] Town
Hometown is-a [subsumes] Town
StudentRoom is located at [houses] exactly one Address }

Table 2.1: Omega-RIDL commitment - Example 1

Figure 2.2: Omega-RIDL commitment - Example 1 - ORM view

Notice that there is an inconsistency inside this commitment: because the
takes daily role is mandatory and the occupies role and the former are exclusive,
the occupies role and consequently the StudentRoom concept will be empty for
every possible instantiation.

Example 2 - without graphical ORM-equivalent

This commitment cannot be completely represented through an ORM diagram.
Only the terminology and its constraints could be drawn but it would not add
much clarity in this case. Also note that we have left out the inverse roles for
practical reasons, which is probably a better solution anyway for the end user.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 10

∗ ∗ ∗ preliminary Omega-RIDL commitment ∗ ∗ ∗
student information.{
if (Student has Degree of type License
in Department ”mathematics”
and Student enrolls in Department ”computer science”)
then Student takes exactly one ShortenedCurriculum }

Table 2.2: Omega-RIDL commitment - Example 2

Omega-RIDL can be viewed as the extension of binary ORM with contexts,
path equivalences, procedural constraints (for-each, conditional statements,...),
etc.

2.3.4 Benefits

Let’s recapitulate some benefits of this new ontological commitment (and query)
language:

• It is much closer to natural language than DAML+OIL and other ontology
languages. This implies rapid comprehension, enhanced usability, . . .

• It is an extension of binary ORM, so the learning curb is kept low for
people who are already familiar with ORM.

• There will be support for conceptual queries using a fairly simple syntax
similar to the constraint syntax, making queries more transparent to the
end user.

• One of the most important features will be the possibility to describe
lexical mappings between applications and the DOGMA lexon base (see
Section 2.4.1).

2.3.5 Usage

Maybe it is also convenient to explain who will make use of Omega-RIDL. We
can distinguish three sorts of users:

Ontology engineers create ontology (lexon) bases and generic commitments
that can be reused. This might involve several tools, e.g. the syntax of
Omega-RIDL could be a good candidate to formalize natural language
texts into lexons and constraints.

Commitment engineers formulate commitments in Omega-RIDL, connect-
ing DOGMA lexons to application data.

End users can read the constraints (which should be easy to understand) and
construct conceptual queries in case the respective ontology is used as a
mediator for a database system.

Of course these are not fixed job assignments, they might overlap. We just
mention this to exhibit the versatility of Omega-RIDL.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 11

2.3.6 Consistency Problems

After an ontological commitment has been formulated, the question arises whether
it is correctly constructed. In other words: since a commitment can be seen as
a set of logical predicates, how can we be sure that we have made a consistent
logical theory, devoid of conflicting and erroneous constraints?

First of all we can observe some minor errors that might have occurred during
the construction of an ontology. These are mostly spelling mistakes and other
ambiguities, e.g. roles that share the same name, but have another meaning.
These are not actual inconsistencies and could be prevented for instance by in-
cluding warnings for duplicate names. Therefore these errors are not examined
any further here. The same holds for syntactical errors which can be detected by
an Omega-RIDL parser. We also note that there is a difference between the con-
sistency of an ORM diagram and the consistency of an ontological commitment.

In [32] four major consistency problems are recognized for a terminological
knowledge representation system. Notice that Omega-RIDL is a terminological
knowledge representation language of which we want to verify the consistency.
Consequently there are four main problems that can be identified when exam-
ining ontological commitments:

1. Knowledge Base Satisfiability: is there a model (instantiation) pos-
sible for a certain commitment? (An application cannot commit if its
ontological commitment is unsatisfiable.)

2. Concept Satisfiability: can a given concept C inside a commitment
have at least one non-empty extension, i.e. can it be instantiated?

3. Subsumption: is a concept C more general than a concept D inside an
ontological commitment, i.e. is there a (implicit) subsumption relationship
between C and D?

4. Instance Checking: is an individual a an instance of a certain concept
C inside a commitment?

It has been proven that all of these problems can be reduced to the Subsumption
Problem and that they can all be solved by applying the appropriate reasoning
algorithms.

In the next chapter we will show some systems implementing such algorithms
and their use for DOGMA commitments, followed by a concrete proposed im-
plementation presented in Chapter 4.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 12

2.4 Notes

The introduction of Omega-RIDL to DOGMA will impose necessary changes
on the system but it also brings new possibilities. We shall now discuss a few
of these issues.

2.4.1 Bridging Commitments

The first topic is the ‘syntactic depth’ of commitments.
Next to the constraint part of ontological commitments (a collection of refer-

enced lexons and imposed constraints), we can have ‘application commitments’,
a set of constraints connecting concepts with objects (parameters, variables,
table and column names, . . .) from an application committing to a certain
ontology base. Application-specific constraints include terms for instances, sup-
port for concrete domains (assigning domain constraints to concepts, e.g. value
ranges, integer, real, string, . . .), connections between ontological concepts and
entities with properties inside the application, etc.

In analogy to the Idea-Bridge methodology of NIAM where a bridge signi-
fies the connection between a non-lexical and a lexical (application-dependent)
entity, these lexical mappings could be called bridging commitments. These
commitments are useful in case a DOGMA ontology is used as the conceptual
model or as a mediator for a relational database. Since these bridging con-
straints are very application-specific, they will be stored in separate bridging
commitment layer, on top of their corresponding constraining commitments to
acquire reusability of the latter. Although this is not formalized yet, it seems
most logical to define a bridging commitment as a part of an ontological com-
mitment since mapping rules are in fact also mere constraints. We emphasize
that this solution is not definitive considering other proposals as in [12].
The syntax to express bridging commitments will be provided by the Omega-
RIDL language, starting with a lexical mapping to SQL statements. Also note
that there is no strict boundary between regular ORM constraints and the lex-
ical constraints, e.g. a value range constraint in ORM could be considered a
part of a bridging commitment.

An interesting feature of some of the old RIDL implementations was their
so-called referability analysis. This was an algorithm that checked if all concepts
in a certain conceptual schema were lexically referable so that there could be
a mapping to a relational database schema3. Normally the goal of declaring
a bridging commitment is to make a corresponding ontological commitment
referable, so this feature could be reincarnated for DOGMA.

3This feature still exists in VisioModeler and other conceptual database modeling tools.

CHAPTER 2. ONTOLOGICAL COMMITMENTS 13

2.4.2 Omega-RIDL-ML

As Omega-RIDL will become the new standard to write ontological commit-
ments, the question will arise if ORM-ML is still needed. It is possible that in
the future there will be a transition to Omega-RIDL-ML, a yet to be defined
markup language that is backward compatible4 with ORM-ML. With Omega-
RIDL-ML both the constrained lexons and lexical mappings could be stored
and exchanged.

4It should be possible to port an ORM-ML commitment to an Omega-RIDL-ML file with-
out any semantic loss.

Chapter 3

Inference Engines vs. Rule
Engines

3.1 Introduction

It would be very convenient to have a theoretical mathematic foundation for
our commitment language. That is why we now delve into the field of de-
scription logics, which provide a formal knowledge representation that has been
thoroughly researched and documented.

A brief overview will be presented on the relations between binary ORM (for-
malized in the Omega-RIDL equivalent) and description logics and we’ll discuss
some well-known description logic formalisms. From there we shall investigate
the applicability of description logics in both rule engines and inference engines.
In the rest of this chapter we will cover the main differences between these two
kinds of systems and their usefulness in terms of our research.

3.2 Description Logics

3.2.1 Introduction

Description logics (DL) are based on a subset of function-free First Order Logic1.
They can act as a form of knowledge representation within a proof-theoretic
framework. Because of their unambiguous and restricted nature description
logics are perfectly suited to implement reasoning algorithms as one can find
inside inference engines.

An important characteristic to emphasize at first is that all DL constructs,
including constraints, define a set of instances related to one or more concepts
(see Appendix A for more information). This means the same syntax can be
used to define constraints and to formulate queries, a feature that significantly
enhances the simplicity.

There are very expressive description logics in existence such as DLR, but in
order to have an acceptable performance for reasoning on DL knowledge bases

1Except if support for transitive closures (a logic fixpoint constructor) is also added to the
language.

14

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 15

and decidable algorithms, we are forced to restrict the number of constructs by
restricting to a small but expressive language such as AL∗ (see next sections).
By doing so, we take the risk of losing some of the expressiveness inherent to
Omega-RIDL.

We shall now present the relationship between Description Logic and Omega-
RIDL, on which we will build further in the following sections.

3.2.2 Mapping Omega-RIDL to Description Logic

To reason with ontological commitment statements (constraint code), we shall
fall back on reasoning with description logics. To accomplish this, we first need
to syntactically connect the two forms of knowledge representation.

We could have shown a proposed mapping between a subset of Omega-RIDL
and description logics, but this is of not much use since there are no systems
implementing the whole of constructors possible in description logics. It is more
sensible to translate to an applied description logic, as the one we shall discuss
in the next section.

Not every construct in Omega-RIDL will have a semantic counterpart in
description logic, and in order to make use of decidable and fast reasoning algo-
rithms for our ontological commitments, we will have to restrict to a minimized
but still sufficiently expressive description logic. Thus there will inevitably be a
minimized subset of features in Omega-RIDL that will be lost while translating.

DOGMA Contexts in Description Logic

Lexons in the DOGMA system are all bound to a certain context. Contexts
could be considered lambda-environments (Church et al). For the mapping of
the context constructor we suggest the following: since lexical scopes will nor-
mally (but not necessarily - see [45]) imply higher order reasoning and likewise
consistency checking, we should avoid it by applying some modifications before
translating Omega-RIDL into DL.

If the context is only used in at the beginning of a commitment, it can
be omitted. In case nested contexts are present inside a commitment, e.g. to
express the equivalence of two possibly synonymic concepts from different con-
texts, we’ll rename the participating items:

contextX .Ci is-equivalent-to contextY .Cj

can be mapped to

(“contextX .Ci” ⊆ “contextY .Cj” AND “contextY .Cj” ⊆ “contextX .Ci”).

In words: the contexts are recursively concatenated as strings to all their
bound concepts and roles to get as endresult a translation in description logic
free from contexts.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 16

3.2.3 SHIQ and SHOIQ
Of course we want to know to what description logic Omega-RIDL is supposedly
to be equivalent. Table 3.1 shows an overview of the naming of DL languages
according to the constructs they support as explained in [31]. For coherence
reasons we have denoted concepts by Ci and role(name)s by Ri. We use the
notation ai to depict instances of concepts. This naming convention is kept
throughout the whole chapter.

Construct DL Syntax Language
concept C

AL∗
role name R
existential quantification ∃R
intersection C1 ∩ C2

value restriction ∀R.C
top ≡ transitive closure (‘thing’) >
bottom ≡ empty set (‘nothing’) ⊥
negation ¬C C
disjunction C1 ∪ C2 U
existential restriction ∃R.C E

number restriction
(6 n R)

N(> n R)
(= n R)

collection of individuals a1, a2, ..., an O
role hierarchy R1 ⊆ R2 H
inverse role R− I

quantified number restriction
(6 n R.C)

Q(> n R.C)
(= n R.C)

role conjunction R1 ∩R2 R
transitive roles R ⊆ R+ R+

functional roles (features) R : {state1, state2, . . .} f

Table 3.1: Classification of Description Logic Languages

AL∗ is the name of one of the best-known elementary description logics.
There are many possible naming combinations for the extension of AL∗, e.g. the
language containing negation and inverse and functional roles is called ALCIf .
Some clarifications:

• Transitive roles are roles that can be a subset of their respective transi-
tive closure, e.g. the role has parent: son has parent father and father
has parent grandfather and so on. For the ORM people: these are equiv-
alent to transitive binary ring constraints. (R+ depicts the transitive clo-
sure of R)

• Functional roles or features are roles that can have only a value as a filler
instead of concepts, e.g. the feature has color: banana has color #yellow
with #yellow describing a state/value, not a concept.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 17

The DL ALCR+ , i.e. ALC extended with transitive roles, is also called S.
Hence you can form the languages SHIN , SHIQ, . . .

To define a mapping for Omega-RIDL to description logics, we will have to
apply several tricks to get a good solution. In many cases, translation will be
possible, in some it will be impossible. A few examples:

• Omega-RIDL (just like ORM) does not explicitly support role hierarchies,
leaving us with no real use for the H description logic role constructor.

• Mandatoriness of roles is translated into a qualified number restriction: a
mandatory role must connect each instance of a concept with at least one
instance of the related concept.

• Role exclusion constraints (depicted in ORM by the symbols ⊗ and the
combination of ⊗ and ¯) are not directly supported in SHIQ. We can
sidestep this by defining an exclusion constraint (a disjunction) on the
concepts that define the range of the respective roles. In case it is a
total exclusion constraint, we delegate the mandatory constraints to all
participating concepts and define a disjunction between the concepts par-
ticipating in the disjoint roles.

After a first exhaustive examination of our mapping problem, we can al-
ready identify at least two ORM/Omega-RIDL constraint types that cannot be
translated with any of the constructors in Table 3.1:

1. External role uniqueness constraints

2. M:n role uniqueness constraints

In the next chapter we’ll give a concrete translation into SHIQ, but we can
already state that the first version of the commitment language Omega-RIDL
will be equivalent to SIQ extended with constructs for the two aforementioned
features. The H is omitted because role hierarchies don’t exist in ORM and
Omega-RIDL, so we don’t need the constructor. Later on, when statements
related to instances are added, it will upgrade to an extension of SOIQ.

We already know [34] that DAML+OIL is equivalent to SHOIQ2. This
means Omega-RIDL and DAML+OIL are very alike semantically, although
there is a large difference syntactically seen. Nonetheless it will be possible
to employ SHOIQ reasoning services to analyze DOGMA ontological commit-
ments, as will be explained in the next chapter.

2In fact, DAML-OIL also supports the assignment of concrete datatypes to its concepts.
Its DL equivalent (without inverse roles) is called SHOQ(D) [40]

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 18

3.3 Description Logic Programming

Description Logic Programming (DLP) [39] is a relatively new domain, which
is based on the semantic intersection of Description Logic and Logic Program-
ming (LP). The goal of this framework is to use the inferencing power of a LP
system for a knowledge base defined in some Description Logic. To reach this,
the respective LP language has to be restricted to the semantic equivalence of
DL (a subset of First Order Logic) so that there can be a lossless mapping in
both directions. In practice this means a DL knowledge base is translated in
LP facts and rules, derived facts are computed, and the whole gets retranslated
to an extended DL knowledge base.

There are several DLP subdomains according to the studied description logic,
e.g. the mapping of DL strictly to Horn rules which leads to knowledge repre-
sentation languages using exclusively Horn rules [36].

We will show an example of Description Logic Programming in section 3.7.4.

3.4 Constraint Logic Programming

Another paradigm related to Logic Programming is Constraint Logic Program-
ming (CLP) [37]. CLP is the fusion of constraint systems and Logic Program-
ming systems that are both built on declarative frameworks based on relations
and backtracking search. It has been developed to achieve a performant solution
to problems concerning planning, configuration, scheduling, etc.
Most CLP languages are extensions of the Prolog language (see section 3.7.2)
and popular systems include CHIP, Prolog III, ECLiPSe, . . .

CLP systems are closely related to rule engines, but they implement a dif-
ferent approach to solve a problem [38]. CLP constraints are written down
in constraint tables (and additional rules), while LP rules are of the form “if-
then”. If a new fact changes one or more constraints, a constraint-based system
is rapidly updated. In contrast, it is very likely that some rules will have to be
deleted and retracted and that other rules will have to be added in a rule-based
system. These rule updates are expensive operations, which implies that the
usage of rules for genuine constraint-related problems is fairly inadequate.

Although its name makes it tempting to explore for DOGMA, it should
be obvious that Constraint Logic Programming is not suited for processing
ontological commitments.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 19

3.5 A-Box vs. T-Box Reasoning

There are two other important concepts frequently referred to in description
logic literature that we need to mention: T-Box and A-Box reasoning.

• T-Box reasoning comes down to computing information for a given Termi-
nology of concepts with their respective relations etc. Hence a T-Box for
an ontological commitment consists of all concepts with all their respective
roles, subsumptions and constraints.

• With A-Box reasoning Assertional knowledge is processed, i.e. instances
of concepts are examined and used to assert facts (e.g. “Mary has child
Leon”, “Car1 is painted black”, . . .).
We recall that the O description logic construct provides syntax to make
A-Box statements that associate instances with values.

This distinction is also present inside the ORM view, which separates the
conceptual model and its instantiation/sample populations.
Examples of T-Box and A-Box statements will arise in this and the following
chapter.

3.6 Open World Assumption

Most description logic systems employ the Open World Assumption, meaning
every fact that is not true inside a given T-Box/A-Box terminology is believed
not to be false and remains unknown until a newly inserted fact states otherwise.

In contrast, rule engines and most database systems for example assume
a Closed World, eliminating a large number of queries and thereby increasing
their inferencing performance.

When considering ontologies, in general an Open World is assumed, primar-
ily due to the dynamic and open character of the semantic web. This will also be
the case for ontological commitments in the DOGMA system, unless of course
an ontology-mediated database is examined.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 20

3.7 Rule Engines

3.7.1 Basics

Rule engines are programs that were also known as expert systems which were
very popular during the 80’s in the field of Artificial Intelligence. By means of
pattern recognition and the firing of rules they compute derived facts for a given
knowledge base. The rules are in fact nothing more than sophisticated if-then
statements, executed in a fast, predefined and non-deterministic way
(A rule is immediately fired whenever its conditions are satisfied, while embed-
ded rule priorities ensure rule conflict resolution.).

Since rule engines are systems implementing the methods of Description
Logic Programming we were interested in which way they could contribute to
the DOGMA system.

Based on their core architecture, there are two major families of rule engines:
Prolog- and Rete-based [15] systems. Both stand for fast inferencing algorithms.
Another distinction can also be made between forward chaining and backward
chaining engines, depending on how rules are fired. We do not go into this in
detail because it is not important in the scope of our research.

We will now discuss some rule-based systems.

3.7.2 Prolog

Probably the most well-known Logic Programming language is Prolog, which is
based on a subset of First Order Logic. A Prolog system can be used as a rule
engine. As in most other (Lisp-based) logic systems, expressions are written in
prefix notation. To give an idea of what Prolog statements look like, we show
the syntax to declare facts and rules:

• Facts are declared using a straightforward notation, e.g. to express that an
instance called martin is parent of charlie we write: parent(martin, charlie).

• Rules are expressed by first stating the conclusion, followed by the condi-
tions to derive it: grandparent(x, z):- parent(x, y), parent(y, z).

Note that Prolog is not a purely declarative language since the order of
assertions determines the execution process.

3.7.3 CLIPS

The CLIPS (C Language Integrated Production System) expert system [13]
was developed at NASA, to be used as a rapid prototyping tool, to develop
production prototypes and production applications. It is Rete-based and can
represent both facts and rules as well as objects.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 21

3.7.4 JESS

Since CLIPS is solely a C-distribution, it has been rebuilt for the Java platform
under the name JESS (Java Expert System Shell). JESS [14] is an open-source
project for the academic community. It is very similar to the CLIPS engine, but
only implements a subsection of its functions and has some extra Java-specific
features.

We have done some experiments in JESS to explore its capabilities. The first
use we found is poor T-Box inferencing: it is possible to design a set of rules
defining the subsumptions and regular relationships (roles) between concepts.
After these rules have been fired, implicit subsumptions will be inferenced as
new facts.

Another important finding is that JESS, like most other rule engines, does
not include consistency checks for rules. Even worse, conflicting or overlapping
rules merely overwrite each other, so there is no guarantee that the translated
constraints of a certain knowledge base will impose their original restrictions on
the concepts.
We explored the possibility of constructing rules to explicitly impose the con-
sistency of translated binary ORM constraints, but that did not work out due
to the high complexity.

The only real benefit of a rule engine with respect to ontological commit-
ments is situated in basic A-Box reasoning. A simple instance validation al-
gorithm can be implemented to compare instances to the knowledge base (ter-
minology) of a certain ontology. This happens through the process of pattern
binding. Consequently, we could have used JESS as A-Box reasoner, but as this
was not our main goal, we abandoned it.

As you can see below, the syntax of JESS is a bit different from Prolog:

• Facts are written down in a similar fashion:
(assert (parent martin charlie))

• JESS rules have their conditionals in front of their goal and they all need
a unique identifier:
(defrule grandparent rule (parent ?x ?y)(parent ?y ?z)
=>(grandparent ?x ?z))

To give an idea of how to implement this A-Box reasoning, we have translated
some Omega-RIDL statements into JESS rules. This incomplete translation is
shown in Table 3.2. As you can see, conceptual constraints have to be trans-
formed into if-then rules to be accepted by the system.
Unfortunately, many constraints, such as cardinality restrictions, cannot be
translated in a direct way (or even not at all), so this is definitely not the
best solution to deal with ontological commitments.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 22

Omega-RIDL JESS rule
C2 is-a C1 (defrule subsumption

(subsumed by ?C2 ?C1)
(instance of ?x ?C2)

(subtyping) => (instance of ?x ?C1))
C1 R one-or-more C2 (defrule mandatory role

(C1 ?x)
=> (R ?x ?y))

C1 R [R−1] C2 (defrule inverse role
(R ?x ?y)

(inverse or co− role) => (R−1 ?y ?x))
R is-transitive (defrule transitive role

(R ?x ?y)
(R ?y ?z)

(transitive role) => (R ?x ?z))
instance binding to concept (assert (instance of a1 C1))
instance binding to role (assert (Ri a1 a2))

Table 3.2: Omega-RIDL translated into JESS-rules

3.7.5 Other Rule Engines

Next to open source systems, there are a lot of commercial rule engines avail-
able on the market, such as the Authorete engine from Haley [16]. The main
differences lie in performance, user interfaces and extra features. Rule engines
are primarily used to maintain, update and execute business rules.

3.7.6 Summary

Rule engines are only useful for processing ontological commitments if they are
employed for Description Logic Programming purposes, in particular as basic
A-Box reasoners. In general there is no consistency checking for rules present,
and it is impossible to have a translation for all kinds of constraints.

Consequently, we have left out rule engines from our current research.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 23

3.8 Inference Engines

3.8.1 Basics

As opposed to a rule engine, an inference engine is a tool that does not accept
rules but exclusively description logic statements. Constraints are not to be
expressed as rules and can be left declarative so that they can be identified
by means of their labels. In other words: you only need to feed an inference
engine purely with descriptive knowledge, because the semantics of constraints
are handled internally. Inference engines can be seen as theorem provers for a
certain Description Logic that decide whether a given knowledge representation
is valid or not.
Currently we have encountered two advanced inference engines that are publicly
available: FaCT and RACER.

3.8.2 FaCT

FaCT (Fast Classification of Terminologies) [22] is one of the rare non-commercial
inference engines. It is designed to reason with DAML-OIL terminologies, im-
plementing advanced tableau algorithms for SHOIQ.

Despite the fact that it is free, we chose not to use it to verify ontological
commitments. The two major drawbacks were its very concise documentation
and its CORBA interface, which makes it impossible to easily incorporate into
a Java-based system such as DOGMA. Furthermore, the public version only
supports T-Box reasoning and does not implement cardinality restrictions.

Recently this engine has been improved and put on the commercial market
as the CEREBRA engine [17].

3.8.3 RACER

Similar to FaCT there is RACER (Renamed ABox and Concept Expression
Reasoner) [25], a T-Box and A-Box reasoner for the SHOIQ logic implemented
in Lisp. It even has limited support for concrete domains, meaning you can
impose rational and integer domain constraints upon concepts.

There is also an open source Java API available to connect and communicate
with a RACER server, as well as a graphical interface client program to examine
a T-Box/A-Box terminology.

All of RACER’s features make it very suitable to integrate within the DOGMA
system, and this is what we will propose in the next chapter, together with
a translation mapping from Omega-RIDL into RACER syntax (equivalent to
SHOIQ).

To our regret, we discovered RACER much too late, so there was not enough
time to implement the ideas supplied in the following chapter.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 24

3.8.4 Tableau Algorithms

The algorithms applied in Description Logic reasoners such as FaCT and RACER
are mathematically founded in the domain of tableau calculus.

Tableau algorithms check the consistency of a terminology (T-Box and also
A-Box) by instantiating concepts and/or roles and propagating these through-
out all connections until a contradiction is found. If no contradiction is detected,
of course the terminology is consistent.
To achieve better performance, a whole range of optimizations can be included,
according to the implementation.

For more information about tableau algorithms for DL reasoning we refer to
[34] and [35].

3.8.5 Summary

Inference engines provide a solution to our problem of verifying the consistency
of DOGMA commitments. Of course, there would have to be a mapping be-
tween Omega-RIDL statements and the Description Logic implemented by the
inference engine, which is always possible if there are no fundamental differences
in semantic expressiveness.

CHAPTER 3. INFERENCE ENGINES VS. RULE ENGINES 25

3.9 Conclusion

In the scope of ontological commitments, rule engines are of not much use since
they are mere derivers of facts. It is possible to translate a commitment to a
set of rules, but they will not be checked for consistency by the rule engine.
Overlapping rules will not be detected and will be imperatively fired. The re-
translation of the rules and facts will provide an updated ontology with possibly
additional inferred facts, but it cannot be guaranteed that these will be consis-
tent with the originally constructed ontological commitment.

Inference engines however provide a solution to detect inconsistencies in a
predefined format, in accordance with a certain description logic. The RACER
inference engine is such an advanced reasoner for the SHIQ description logic.
As we already have suggested that commitments written in Omega-RIDL can be
mapped to SHIQ (with some loss of expressiveness), we can also map Omega-
RIDL to input for an inference engine. This way, we can leave the consistency
checking of ontological commitments to the reasoning algorithms inside an in-
ference engine.

In the next chapter we shall propose the integration of the RACER engine
into the DOGMA system, including a proper translation of binary ORM con-
straints into SHIQ and a proof of concept.

Chapter 4

Verification of Ontological
Commitments

4.1 Problem Definition

4.1.1 Introduction

Adopting the T-Box/A-Box distinction, we can define the description logic
equivalent of an ontological commitment as a pair Σ = 〈T ,A〉 where T is a
T-Box and A represents an A-Box. An interpretation I is a model for Σ if it is
a model for both T and A. With this knowledge, let’s recapture the problems
stated in Section 2.3.6:

1. Knowledge Base Satisfiability: a commitment Σ is satisfiable if it has
a model

2. Concept Satisfiability: a concept C is satisfiable w.r.t. Σ if there exists
a model I of Σ such that CI 6= ∅

3. Subsumption: C is subsumed by D w.r.t. Σ, if CI ⊆ DI for every
model I of Σ

4. Instance Checking: a is an instance of C, written Σ |= C(a), if the
assertion C(a) is satisfied in every model of Σ

With this formalization we have unambiguously defined the consistency1

problems for commitments, and these are exactly the problems that can be
tackled by an inference engine such as RACER.

Omega-RIDL commitments will be stored for reference and reuse. Of course
it would be impractical to store incorrect or inconsistent commitments. Thus
we propose to integrate the RACER SHOIQ reasoner in the DOGMA system
to impose a consistency verification before compiling ontological commitments
to a specified storage format.

1Sometimes T-Box consistency is called coherence, which may be a better term.

26

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 27

4.1.2 Omega-RIDL Compiler

Currently being developed, the Omega-RIDL compiler is a new component of
the DOGMA system that will parse Omega-RIDL commitments, verify them for
consistency, and then translate them into a yet to be defined file format. This
will most probably be an XML-compliant format, based on a Omega-RIDL
DTD.

4.1.3 DOGMA Contexts

We recall that contexts are left out from the reasoning process by applying the
modifications explained in section 3.2.2.
The applied method is totally legal since the syntax of contexts adds no extra
semantic restrictions on an Omega-RIDL commitment.

Reasoning on DOGMA contexts will probably become possible, but this is a
problem situated on a whole other level than that of ontological commitments.

4.2 Existing Ontological Consistency Checkers

We already described the RIDL-A module inside RIDL* [3] which analyzed con-
ceptual schemas by treating them as semantic networks.
Of course there are also some more recent applications that verify the consis-
tency of ontologies.

4.2.1 ConsVISor

Besides FaCT and RACER, we have found one tool that explicitly claims to
check the consistency of ontologies: ConsVISor [18].
ConsVISor is designed to verify the consistency of ontologies related to the
semantic web.

Unfortunately this is a rather poor tool, using a Prolog rule engine and
SNARK [47], a resolution-and-paramodulation theorem prover for first-order
logic with equality. We have already shown the disadvantages of this in the
preceeding chapter.

4.2.2 DISCOVER

The DISCOVER tool described in [48] is used to detect anomalies between an
ontology and a knowledge base that commits to it. DISCOVER incorporates
the COVER tool which has its own COVER Rule Language (CRL) applied on
top of terminologies defined in the MOVES ontology language.

We found it rather unpractical due to its complexity and its different ap-
proach to ontologies.

4.2.3 i-com

i-com [19] is a tool for checking the consistency of (extended) EER diagrams that
connects to the FaCT inference engine via its CORBA interface. It implements
a complete inferencing solution to check the consistency and to make deductions
of the conceptual models.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 28

4.3 Consistency Checking with the RACER In-
ference Engine

4.3.1 RACER Basics

Like every description logic system, RACER is built on a concept language,
defining all legal concept terms, and an elementary role language. The corre-
sponding BNF is shown in Table 4.1.

C → CN |
top |
bottom |
(not C) |
(and C1 . . . Cn) |
(or C1 . . . Cn) |
(some R C) |
(all R C) |
(at-least n R) |
(at-most n R) |
(exactly n R) |
(at-least n R C) |
(at-most n R C) |
(exactly n R C) |
CDC

R → RN |
(inv RN)

Table 4.1: RACER Concept and Role Constructors

The concept *top* signifies the most general concept of a T-Box. Like-
wise, the *bottom* concept denotes the inconsistent, incoherent or unsatisfiable
concept.

RACER clearly distincts between its T-Box and A-Box component by sepa-
rating the functionalities for both components. Furthermore, we recognize that
it is in fact a reasoner for the SHOIQ(D) description logic. The D stands for
a limited support of a feature called Concrete Domains, as explained in Section
4.3.3.

RACER employs the Open World Assumption and Unique Name Assump-
tion, meaning that all instance names refer to a different element in the UoD.

4.3.2 Integration into DOGMA

Firstly, the RACER server program for Windows (or UNIX - both are available)
is started by running the executable, hereby promoting the respective computer
system in the network to a RACER server. This server has three interfaces: a
file-based, a HTTP-based and a TCP Socket-based one.

A full Java API has been developed to communicate with the RACER server
via the TCP/IP protocol. With this JRACER API terminologies can be sent
to the server and checked for consistency.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 29

Figure 4.1: Integration of RACER into DOGMA

The integration of RACER into DOGMA is fairly simple as shown in Fig-
ure 4.1: a pc in the network is used as RACER server, and its (constant) IP
address is stored inside the Omega-RIDL interpreter/compiler to connect with
the server via the JRACER API.

The consistency checking of an ontological commitment is equivalently easy
to implement: Omega-RIDL compiler feeds RACER the translation of a parsed
commitment through the JRACER Java API, consistency is verified by sending
the appropriate function calls (see Section 4.3.4) to the server, results are sent
back to the compiler and the commitment is compiled into the wanted output
format. Of course inconsistent commitments will not be compiled: an error
message will be shown instead.
Note that the same dataflow applies if one only considers the interpretation of
an Omega-RIDL commitment; in that case the compilation is left out from the
process.

4.3.3 Omega-RIDL-to-RACER Mapper

First of all, the parsetree of a parsed Omega-RIDL commitment will be trans-
lated into RACER syntax so it can be used as input to reason on.

This is a preliminary version, seen Omega-RIDL is a language that is still
being constructed. This means the constructs shown here can differ in the final
version of Omega-RIDL. In general, the old RIDL syntax is usually adopted.
Note that it will be possible to formulate the same constraint in several ways

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 30

in Omega-RIDL. Furthermore, RACER also in many cases supplies more than
one way to express a description logic feature (we refer to the official RACER
manual [27] for all ‘syntactic sugar’ statements). For a formal translation of
binary ORM into SIQ we refer to Appendix B.

Omega-RIDL RACER input

Concept1 role [co-role] Concept2 (signature
:atomic-concepts (Concept1 Concept2)
...)

(define-primitive-role role)
(inverse role co-role)

Concept2 is-a [subsumes] Concept1 (implies Concept2 Concept1)
Concept1 , Concept2 , . . . are-disjoint (disjoint Concept1 Concept2 . . .)

(disjointness of concepts)

Concept1 role one Concept2 (implies Concept1 (exactly 1 role Concept2))
Concept1 role at-most-one Concept2 (implies Concept1 (at-most 1 role Concept2))
Concept1 role one-or-more Concept2 (implies Concept1 (at-least 1 role Concept2))
Concept1 role at-most n Concept2 (implies Concept1 (at-most n role Concept2))
Concept1 role at-least n Concept2 (implies Concept1 (at-least n role Concept2))
Concept1 role exactly n Concept2 (implies Concept1 (exactly n role Concept2))
Concept1 role1 Concept2 (implies
implies Concept1 role2 Concept3 (and Concept1 (some role1 concept2))

(role subset constraint) (and Concept1 (some role2 concept3)))
Concept1 role1 Concept2 (equivalent
equals Concept1 role2 Concept3 (and Concept1 (some role1 concept2))

(role equality constraint) (and Concept1 (some role2 concept3)))
Concept1 role1 Concept2 (equivalent “Concept1role1”
excludes Concept1 role2 Concept3 (some role1 Concept2))

(equivalent “Concept1role2”
(some role2 Concept3))

(role exclusion) (disjoint “Concept1role1” “Concept1role2”)
Concept1 role1 Concept2 (equivalent “C1role1”
xor Concept1 role2 Concept3 (at-least 1 role1 C2))

(equivalentt “C1role2”
(at-least 1 role2 C4))

(mandatory role exclusion) (disjoint “C1role1” “C1role2”)
Concepti is-restricted-to { j..k } (signature ...

:attributes ((integer|real attrib1)) ...)
(equivalent Concept1

(value constraint) (and (min attrib1 j) (max attrib1 k)))
at-most #n of Concept1 are-allowed for all mandatory roles rolem on Concept1:

(implies Conceptm
(object frequency constraint) (at-most #n (inv rolem) Concept1))

rolei is-transitive (define-primitive-role rolei :transitive t))
rolei is-symmetric (define-primitive-role rolei :symmetric t))
Concept1 rolex Concept2 roley Concept3 . . . (and Concept1 (some rolex

(and Concept2 (some roley

(and Concept3 (. . .))))
(path-expression)

concept-exp1 is-equivalent-to concept-exp2 (equivalent concept-exp1 concept-exp2)
(path-equivalence)

if concept-exp1 then concept-exp2 (implies concept-exp1 concept-exp2)
(terminological if-then)

Table 4.2: T-Box translation of Omega-RIDL to RACER input

Also, for demonstration purposes the different translations are shown here
separately, but usually a T-Box is entered in RACER as one whole of concept

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 31

and role declarations and constructs. This whole is called the signature of a ter-
minology. Apart from the declaration of atomic concepts, every constructor can
be added after defining the signature by a calling a separate macro or function.

Let us now clarify the above translations in the following points:

Lexons

Lexons are elementary facts, defining a relationship named by a rolename that
connects two elementary or atomic facts, including the rolename of the inverse
relationship. In RACER, atomic concepts have to be defined in the signature
of a T-Box: there is no independent constructor for atomic concepts. Domain
and range can be included to improve performance, but this is allowed only if
the role inside the lexon has a unique name.

Subtyping

In contrast to ORM and description logic, subsumptions in Omega-RIDL are
expressed by means of a regular role named “is-a” instead of a special construct.
For now we have assumed that each and every “is-a” role defines a complete sub-
sumption, implying that a subtype inherits all of its supertype’s relationships
and other properties. Maybe in the future it could become possible to differenti-
ate the “is-a”’s by adding the necessary commitment syntax and interpretation
mappings.

Note again that RACER clearly distinguishes between instantiation (an A-
Box assertion) and subsumption (a T-Box assertion).

Mandatory roles

Due to their semantics and graphical notation in ORM, there is a small catch
when mandatory roles are verbalized and translated. The mandatory constraint
for a concept on a role is expressed by defining a qualified number restriction
on the connected concept inside the same lexon.

Transitivity, reflexivity & symmetry of roles

RACER explicitly supports transitive, reflexive and symmetric roles (cfr. ring
constraints in ORM)2. These respective properties can be specified by extending
the role definition by using some of the optional parameters:
(define-primitive-role role (transitive nil) (reflexive nil) (symmetric
nil))
Each feature is declared by binding it to t (the symbol for true), so
(define-primitive-role a transitive role :transitive t) defines a transitive
role.
As opposed to ORM, you explicitly have to define a transitive role in RACER.

Important notice: currently reflexive roles are only permitted for ALCH
knowledge bases, so they cannot be used since the semantics of lexons already
impose a minimum of ALCI.

2ORM is more expressive in this case: it also supports irreflexivity, asymmetry, antisym-
metry, intransitivity and acyclicity of roles.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 32

Frequency or Cardinality constraints

ORM frequency constraints on roles (generally called cardinality constraints)
have a straightforward translation to qualified number restrictions in descrip-
tion logic.

Frequency constraints on concepts can be supported by applying the fol-
lowing rule: the inverse role of every mandatory role played by the restricted
concept has to be constrained by the original object frequency constraint. The
Concept m in Table 4.2 denotes all concepts connected to the constrained
Concept1 via an inverse mandatory role.
This tweak is not a direct translation and requires some preprocessing to detect
all mandatory roles. However, it captures the possible inconsistencies of con-
flicting cardinality constraints on roles connected to the cardinality-constrained
concept.
(In case reflexive roles were applicable, we could have used a ‘virtual’ cardinality-
constrained reflexive role on the restricted concept.)

Uniqueness constraints

Only 1:n and n:1 uniqueness constraints can be mapped to RACER. Naturally
their equivalents are expressed as qualified number restrictions.

Many-to-many m:n uniqueness constraints are irrelevant for description logic
reasoning since in mathematic sets there can be no duplicates. Such constraints
only become important when a relational database is connected to a set of
lexons, so we suggest to store them inside the bridging part of the commitment.

Similarly, external uniqueness constraints on roles find no translation and
have to be ignored inside an ontological commitment. We have tried to find
a way out of this by means of the available DL constructors, alas to no avail.
Because of this, there are some potential inconsistencies that will be overlooked
although this is quite unlikely to happen if we look at practical cases.

ORM uniqueness constraints are added to the conceptual schema only to
implement complete reference schemes for a relational database mapping. Thus
primary uniqueness constraints are also ignored during the verification phase of
an ontological commitment.

Role subsets

Role subset constraints have to be translated by defining a subsumption between
the concepts playing the respective roles.

It would be tempting to apply the role hierarchy constructor implies to
express a role pair subset constraint, but since there is no unique role name
assumption, this could cause semantic chaos. Therefore, a role pair subset
constraint is translated as two single role subset constraints.

Role equality

Role equality constraints are simply stated by defining an equivalence between
the concepts that are each involved in one of the two roles.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 33

Role exclusions

Role pair exclusion for two roles R1 and R2 could be supported if it were legal
to write (implies R1 (not R2)) and (implies R1 (not R2)). Unfortunately
negation is only allowed on primitive concepts.

We have found a way to include role exclusion by stating that the concepts
connected by the participating roles are disjoint. Because it is prohibited in
RACER to assert disjointness between concept-expressions ((disjoint (all R1

Cx)(all R2 Cy))), we have to assign these two concept-expressions to two new
concept names. For simplicity we have chosen to concatenate each concept name
with its role name, as you can see in Table 4.2. Of course this method can be
applied to any n-ary role exclusion constraint.

Value Constraints with RACER Concrete domains

As stated before, RACER allows a restricted value domain to be defined for its
concepts, meaning instances can be of type integer or rational and there is a
set of arithmetic operators supported to perform calculations, conversions, etc.
Table 4.3 shows the complete BNF for the concrete rational number and integer
domains.

CDC → (a AN) |
(an AN) |
(no AN) |
(min AN integer) |
(max AN integer) |
(equal AN integer) |
(> aexpr aexpr) |
(>= aexpr aexpr) |
(< aexpr aexpr) |
(<= aexpr aexpr) |
(= aexpr aexpr)

aexpr → AN |
real |
(+ aexpr1 aexpr1∗) |
aexpr1

aexpr1 → real |
AN |
(* real AN)

Table 4.3: RACER Concrete Domain Constructs

Although the name real is used, it refers to a rational number. The under-
lying reasoning scheme in RACER is based on Q and Z in combination with
linear inequations.

Value constraints can be added to individuals or concepts by connecting
them to so-called attributes, which have to be declared by their attribute name
(AN) in the signature of the T-Box. By constraining the attribute connected to
a certain concept, we can impose the original value constraint.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 34

Apart from integer and rational number domains, RACER does not support
general value constraints on concepts as in ORM, defining a restricted set or
range of values e.g. by defining a set of string codes. There are two ways of
sidestepping this problem:

1. The first way is to transform the domain restricted concept and its con-
necting role into a RACER feature. A feature is a special kind of role that
has a restricted set of values as its domain is a value range instead of a
(set of) instances of concept(s).

2. The second option is to build a hierarchy of concepts consisting of the value
concept as top node and all possible values as disjoint subtypes. Of course
the semantics of the range values get lost by applying this transformation.

However, we still choose to designate a RACER attribute to the restricted
concept, and then constrain it according to the originally supplied value ranges.
This method is preferred especially since it has been announced that future
implementations of RACER will also support string concrete domains, which
are commonly used (e.g. to define a set of codes like for the sexes ‘F’ and ‘M’).

Path expressions

Every Omega-RIDL path expression defines a set of instances inside a model
in terms of the referenced concepts, possibly satisfying some constraints. In
RACER an equivalent can be constructed, although the syntax is less appar-
ent. A conceptual path that contains subsumptions is expressed through silent
subtyping3, meaning that only the subtype of a subsumption is mentioned, and
not its supertype(s). The next example should make this clear:

Person drives at-most-one Porsche subsumed by Car belonging to Company

is equivalent in DL to

(implies Person (at-most 1 drives (and Porsche (some belonging to Com-
pany))))

Car is omitted because the Porsche concept inherits all roles of its supertype.
The subsumption is explicitly shown in Omega-RIDL for clarity. Note that there
is no translation for this in description logic.

Path equivalence

To express the equivalence of two conceptual path expressions in SHIQ, we
simply have to define them to be equivalent. Path equivalence is a very useful
feature that is rarely to be found in other languages.

An example: to state that a musician who plays in a group that plays certain
genres plays all the genres that group plays and vice versa we could write this
down in Omega-RIDL as Musician plays in Group playing Genre is-equivalent-to
Musician plays Genre .

3Silent subtyping was also a key feature of old RIDL implementations.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 35

Conditional Statements

In general, conditional statements such as the one in Example 2 of Section 2.3.3
cannot be defined in description logic. There is however one kind of omega-
RIDL if-then statement that can be translated, namely if-then-statements with
condition and goal having identical concept names at the start4 and containing
no A-Box assertions.
A semantic equivalent is reached by defining a general inclusion axiom between
the two path expressions inside the if- and the then-clause, so we can leave out
conditionals statements from the consistency checking.

Unsupported Omega-RIDL Constraints

We now summarize all constraints that cannot be translated to the RACER
SHOIQ(D) description logic.

• M:n uniqueness constraints on roles are only relevant for database pur-
poses. We suggest to place them inside the bridging commitment part of
a commitment.

• External uniqueness constraints are also mainly added for database pur-
poses and cannot be verified together as the other T-Box constraints

• Most ORM ring constraints cannot be translated except for transitive and
symmetric roles.

• Although currently not investigated, state transition constraints, which
describe temporal changes of concepts are clearly not translatable into
SHIQ. They must be handled through another formalism, e.g. situation
calculus.

• Just like the old RIDL, Omega-RIDL will probably contain procedural
statements, with nested conditionals and combinations of A-Box and T-
Box statements, etc.
In general these will also not be translatable.

Note that this list still can grow in the future since the full syntax of Omega-
RIDL was not available at the time of writing this thesis.

Another thing to mention is that we do not present a ‘smart’ method of trans-
lating, meaning that subsuming constraints are not detected and are translated
on the spot. It could be interesting to add, but for now we only consider the
mapping itself.

4We could loosen this precondition by allowing identical concepts at beginning or end of
the if-condition and then-body, thereby reversing a conceptual path if the identical concepts
are not at the front of both parts.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 36

4.3.4 Inconsistency Analysis

RACER offers a large range of decision functions to answer the different con-
sistency problems. We now present a selected overview of the most relevant
functions for both A-Box and T-Box.

T-Box consistency

The following two functions are the first to be called from the Omega-RIDL
compiler:

• (check-tbox-coherence) returns a list of all unsatisfiable concepts. If
only a list containing nil is returned (nil), then this means that there
is no synonym for the incoherent bottom concept and that the T-Box is
consistent.

• (concept-coherent?) returns nil if there is an unsatisfiable concept, oth-
erwise it returns t (true).

• (classify-tbox) classifies the T-Box and needs to be executed before
queries can be posed.

These are some of RACER’s subroutine functions:

• (concept-satisfiable? concept-exp1) returns t if concept-exp1 is satis-
fiable, nil otherwise.

• (concept-subsumes? concept-exp1 concept-exp2) returns t if concept-
exp1 subsumes concept-exp2, nil otherwise.

To avoid redundancy: the outcome of the following self-evident functions is
analogous to the ones above.

• (concept-equivalent? concept-exp1 concept-exp2)

• (concept-disjoint? concept-exp1 concept-exp2)

• (concept-equivalent? concept-exp1 concept-exp2)

A-Box consistency

The A-Box component of RACER will only come of real use in the second phase
of the development of Omega-RIDL, when ’bridging commitments’ (see Section
2.4.1) will be introduced in the DOGMA system, admitting instance assertions
inside a commitment.
It could also be used for instance validation and for querying.
These are the most important A-Box functions:

• (realize-abox) checks the consistency of the A-Box and computes the
most specific concepts for each individual in the A-Box.

• (check-abox-coherence) checks if the A-Box is consistent; returns t if
consistent, otherwise information about the infringing instances is printed

• (abox-consistent?) returns t if the A-Box is consistent and nil other-
wise

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 37

4.3.5 A Sample Translation

We shall now provide an example to demonstrate some of the mapping solutions
explained above. The chosen ontology is situated in the field of music catalogues.

context termlabel1 role co-role termlabel2
music catalogue Musician plays on features Track
music catalogue Musician has written written by Track
music catalogue Musician is member of has member Band
music catalogue Musician plays played by Genre
music catalogue Band is influenced by has influenced Band
music catalogue Band has of Url
music catalogue Band made made by Record
music catalogue Band has of Name
music catalogue Musician is a subsumes Person
music catalogue Producer is a subsumes Person
music catalogue Person has of Name
music catalogue Producer produced produced by Record
music catalogue Engineer is a subsumes Person
music catalogue Engineer mixed mixed by Track
music catalogue Track is on contains Record
music catalogue Track has of Title
music catalogue Record has of Title
music catalogue Record has of Genre
music catalogue Record released on released Recordlabel
music catalogue Record has of Releaseyear
music catalogue Record has of Rating

Table 4.4: A music catalogue ontology - DOGMA lexons

The elimination of the context labels is straightforward in this case: there
is only one context term present in front of the entire commitment, so it can
simply be omitted.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 38

\\ ∗ ∗∗ preliminary Omega-RIDL commitment ∗ ∗ ∗
music catalogue.{
Musician is-a person
Producer is-a person
Engineer is-a person

\\ all referenced lexons including co-roles
Musician plays on [features] Track
Musician has written [written by] Track
Musician is member of [has member] Band
. . .

Person has one Name
Band has one Name
Band has member at-least 1 Musican
Musician plays on at-least 1 Track
Track is mixed by at-least 1 Engineer
Track has one Title
Record has one Title
Record has at-least 1 Genre
Record released on at-least 1 Recordlabel
Record produced by at-least 1 Producer
Record contains at-least 2 Track
Record has one Releaseyear
Record has at-most 1 Rating
Record made by at-least 1 Band

Person subsumes Producer excludes Person subsumes Musician
Person subsumes Musician excludes Person subsumes Engineer
Rating is-restricted-to {0..10}
is influenced by is-transitive

Musician is member of Band made Record has Genre
is-equivalent-to Musician plays Genre

}

Table 4.5: A music catalogue ontology - Omega-RIDL commitment

Figure 4.2 represents the ORM diagram of the ontological commitment writ-
ten in Omega-RIDL as formulated in Table 4.5. Notice that it only shows the
graphically displayable part of the commitment and that it already becomes
quite complicated even though the ontology is still relatively small. Also, for
this example, m:n uniqueness and external uniqueness constraints have not been
supplied since they cannot be translated anyway.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 39

Figure 4.2: A music catalogue ontology - binary ORM diagram

The RACER translation of the above commitment is presented in Table 4.6.
We have supplied domain and range constraints for some roles, which is not
really necessary, but it improves RACER’s reasoning and classification perfor-
mance. This could be automated by checking for each role if it is exclusively
defined in one lexon inside the commitment.

The chosen ontology proves to be satisfiable after submitting it to the RACER
engine.

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 40

;;; initialize the T-Box "music catalogue"

(in-tbox music catalogue)

;;; the signature of the T-Box

(signature

:atomic-concepts (Person Musician Engineer Band Producer Url Record

Track Title Genre Recordlabel Releaseyear Rating)

:roles ((plays :inverse played by)

(plays on :inverse features)

(has written :inverse written by)

(is member of :inverse has member)

(is influenced by :inverse influenced :transitive t)

(mixed :inverse mixed by)

(produced :inverse produced by)

(has :inverse of)

(released on :inverse released)

(made :inverse made by)

(contains :inverse is on))

:attributes ((integer score)))

;;; domain & range restrictions for roles (enhances performance)

(domain produces Producer)

(range produces Record)

(domain released on Record)

(range released on Recordlabel)

;;; the (constrained) concepts

(implies Musician Person)

(implies Producer Person)

(implies Engineer Person)

(implies Person (exactly 1 has Name))

(implies Band (exactly 1 has Name))

(implies Band (at-least 1 has member Musician))

(implies Musician (at-least 1 plays on Track))

(implies Track (at-least 1 mixed by Engineer))

(implies Track (exactly 1 has Title))

(implies Record (exactly 1 has Title))

(implies Record (at-least 1 has genre))

(implies Record (at-least 1 released on Recordlabel))

(implies Record (at-least 1 produced by Producer))

(implies Record (at-least 2 contains Track))

(implies Record (exactly 1 has Releaseyear))

(implies Record (at-most 1 has Rating))

(implies Record (at-least 1 made by Band))

(equivalent Rating (and (min score 0) (max score 10)))

(implies (and Musician (some is member of (and Band

(some made (and Record (some has Genre))))))

(and Musician (some plays Genre)))

Table 4.6: A music catalogue ontology - RACER T-Box terminology

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 41

4.3.6 RICE: Graphical T- and A-Box Viewing

To facilitate the maintenance and of RACER knowledge bases, a graphical in-
terface has been implemented. The system is called RICE (RACER Interactive
Client Environment) [28] and provides a set of windowed views on a RACER
Terminology. One can browse and inspect the T-Box and A-Box through a set
of menus that provide the functionality of the JRACER API.

Figure 4.3: A music catalogue ontology - RICE screenshot (T-Box view)

A screenshot of RICE containing the T-Box of the translated music catalogue
ontology is presented in Figure 4.3. As you can see there are no inconsistencies
present since RACER does not show any insatisfiable concepts after querying
for the T-Box coherence.

To give an inconsistent example, we consider a somewhat unrealistic change
to the above commitment: suppose that every recordlabel released at least
twenty records (a mandatory role), that every record is released on at least four
recordlabels (cardinality constraint) and that there are only three recordlabels
left in the world (object frequency constraint). This will add the following state-
ments to the Omega-RIDL commitment (Table 4.7) and the RACER translation
(Table 4.8):

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 42

\\ ∗ ∗∗ preliminary Omega-RIDL commitment ∗ ∗ ∗
...
Recordlabel released at-least 20 Record
Record released on at-least 4 Recordlabel
Record released on at-least 3 Recordlabel
}

Table 4.7: A music catalogue ontology (extension) - Omega-RIDL commitment

...

(implies Recordlabel (at-least 20 released Record))

(implies Record (at-least 4 released on Recordlabel))

(implies Record (at-least 3 released on Recordlabel))

Table 4.8: A music catalogue ontology (extension) - RACER T-Box terminology

The inverse of the mandatory released role is constrained according to the
rule in Table 4.2 and clearly conflicts with the other cardinality constraint on
this same role.

After querying for the T-Box coherence, RICE gets the message from RACER
that three concepts have become unsatisfiable as you can see in Figure 4.4. They
are left out from the concept tree in the left-hand column.

Figure 4.4: A music catalogue ontology (extension) - RICE screenshot

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 43

4.3.7 Decidability and Performance

Normally reasoning is undecidable for a general description logic, but SHIQ
reasoning has been proven to be decidable [32].

Due to the heavy strain of inverse roles, the worst time complexity of the
subsumption problem in SHIQ turned out to be NExpTime. Fortunately, by
including a large number optimizations performance can be improved in many
cases. We have not encountered any work on the behavior of SIQ, but we
expect that in practice the absence of role hierarchies will not make much dif-
ference.

Also, most inference engines, including RACER, are implemented in Lisp, so
there will be some performance drop by connecting a Java API to a Lisp binary
compared to working completely in Lisp, which can turn out to be considerably
faster in a considerable number of cases [46].
Also not unimportantly for DOGMA, RACER has been proven to perform well
on large knowledge bases [26].

4.4 Supporting A-Box Conditionals: Rule En-
gines Revisited

In business application domains, so-called business rules are very common. Busi-
ness rules in their actual sense express organization policies, workflow, business
processes, . . .
Among these we find many constraining if-then-rules that have an A-Box query
inside the conditional, e.g. “if Person has Car=’red’ then Person has received
at-least 1 SpeedTicket”. RACER however does not support A-Box-conditioned
T-Box constraints because it clearly separates instance from terminological level.

One solution to verify the consistency of these type of rules is to temporarily
extend the current T-Box with every alternative constraint and then check the
consistency.

In case of if-then-else clauses, the alternative (‘else’) case can be expressed
as the conclusion of the negated condition. In general, negation is only allowed
on atomic concepts in logic programming, but by applying De Morgan’s laws,
one can always convert to the negation normal form.

A better solution would be to include, next to an inference engine, a rule
engine. This has been explored in the past, with good results. For example,
SweetJess [20] is a tool that employs the JESS rule engine to inference RuleML
[51] rules imposed on a DAML+OIL ontology.
Thus we could consider integrating the JESS engine into DOGMA.

In practice, this would mean an ontological commitment is validated through
RACER, and the ‘business’ if-then-rules (that are left out from RACER) are
then translated and inserted into JESS, together with the basic terminology
(subsumptions between concepts). JESS supports Java calls from within its
system, so business rules can have business actions (which can include new

CHAPTER 4. VERIFICATION OF ONTOLOGICAL COMMITMENTS 44

fact assertions, T-Box constraints or external Java function calls) in their body,
e.g. “if John is a Loyal customer then ((John has Discount = 5%) and
(mailsys.sendMail(John@yahoo.com, discountmsg))))”.
Even more interesting, we could call the JRACER API directly from within
JESS to directly add T-Box constraints when a dedicated rule is fired.

As JESS supports disjunctions, conjunctions and negations, there is much
expressive potential and this could be a nice extra feature to the DOGMA
system.

4.5 Incremental Consistency Checking

By only checking the consistency at its final design stage, an ontological com-
mitment is fed as a whole into RACER, maximizing the debugging overhead.

To preserve a better overview of the consistent part of a commitment that is
under construction, we could alternatively implement an interpreter that verifies
the consistency step-by-step. In this manner, one can rapidly detect the first
erroneous constraint instead of having to deal with multiple inconsistencies at
the same time. The downside of this will probably be a remarkable decrease in
performance, but this has to be verified.

Of course it will still be possible that adding one constraint leads to a cas-
cade of conflicts, leaving the user with an untransparent set of inconsistencies.

The problem of pointing out the sources of inconsistency in a deterministic
way is rather complex and is not a standard feature of an inference engine. An
example implementation of it is available for the CLASSIC system [29].

4.6 Future Work

Once an applicable part of the Omega-RIDL syntax is finished, the proposed
translation mapping to RACER input can be implemented. This mapping can
then be used to check the consistency of commitments that are parsed by an
Omega-RIDL interpreter.

In addition we could add the JESS rule engine to DOGMA to extend the
system with support for business rules, if required.

Chapter 5

Conclusion and Future
Work

5.1 Conclusion

In this thesis we have described the current status of the DOGMA system,
introducing the Omega-RIDL constraint language to formally describe ontolog-
ical commitments. We have shown that it is possible to translate Omega-RIDL
constraints (which are backward compatible to binary ORM constraints) into
description logic as these are largely overlapping subsets of first order logic. The
close relationship between Omega-RIDL ontological commitments and knowl-
edge representation terminologies in the SHIQ description logic enabled us to
explore the functionalities of inference engines.

Furthermore we have demonstrated that the RACER inference engine com-
prises a useful addition to DOGMA to verify the consistency of ontological
commitments. This has led to the concrete translation mapping of Omega-
RIDL/binary ORM commitment syntax into SHOIQ(D) RACER input. Dis-
tinguishing between the T-Box and the A-Box, RACER provides a formal plat-
form to check, validate and query commitments, implementing decidable con-
sistency verification algorithms. Together with its technical specifications and
add-ons, this makes it a perfect candidate to integrate into the DOGMA frame-
work.
In addition we have concluded that a rule engine such as JESS could also be of
use as a secondary inferencing tool to execute business rules.

45

CHAPTER 5. CONCLUSION AND FUTURE WORK 46

5.2 Future work

A lot of related work for the DOGMA system is still in the pipeline.

One of the first tasks is to build an Omega-RIDL interpreter that employs
the RACER engine as back-end system to verify the consistency of ontological
commitments.
As an extension, an Omega-RIDL compiler can be implemented to store com-
mitments in some output format. This will most probably be some XML format,
presumably called Omega-RIDL-ML, which should be backward compatible to
ORM-ML.

Another useful addition could be a graphical browsing utility for Omega-
RIDL commitments, which could be plugged in to the DOGMA Modeler tool.
To achieve this, we could the RICE client application for RACER to automat-
ically generate a graphical presentation from a textual commitment, to get a
better overview of the respective lexon terminology. Of course the ORM con-
straints will be lost then presentation-wise, so maybe a proper implementation
will be preferred.

Also interesting to do is performing instance validation of a commitment by
creating and querying an accompanying A-Box. This could be accomplished
by employing the RACER A-Box query component. Recall that Omega-RIDL
query path expressions are easy to translate as we have shown.

Since we have presented a concrete translation from Omega-RIDL and bi-
nary ORM to SHIQ, our proposed mapping can be used as a guideline to define
the formal translation of both formalisms into other ontology and rule languages
such as DAML+OIL, RDF(S), RuleML, etc. and vice versa. This would be a
major improvement because then many existing, external ontologies could be
stored in the DOGMA format, which is ideal for testing and experimenting.

We finally emphasize that the true power of Omega-RIDL will emerge once
there is a concrete to formulate bridging commitments (or lexical mappings),
promoting varied ontology⇔database mapping functions to first-class proce-
dures of a very high-level ontological commitment and query language.

Bibliography

[1] T. Halpin, “Information Modeling and Relational Databases: From Con-
ceptual Analysis to Logical Design”, Morgan Kaufmann Publishers, 2001.

[2] O. De Troyer, R. Meersman, F. Ponsaert, “RIDL User Guide”, (prelimi-
nary version), Control Data Corp., 1984.

[3] R. Meersman, F. Van Assche, “Modelling and Manipulating Production
Data Bases in Terms of Semantic Nets”, IJCAI Karlsruhe, pp. 325-329,
1983.

[4] O. De Troyer, R. Meersman, P. Verlinden, “RIDL* on the CRIS case: A
Workbench for NIAM”, INFOLAB Tilburg University, 1988.

[5] O. De Troyer, “RIDL*: A Tool for the Computer-Assisted Engineering
of Large Databases in the Presence of Integrity Constraints”, INFOLAB
Tilburg University, 1989.

[6] R. Meersman, “The High-Level End User”, Control Data Corp., 1982.

[7] G. Verheijen, J. van Bekkum, “NIAM: aN Information Analysis Method”,
In Proceedings of IFIP Conference on Comparative Review of Information
Systems Methodologies (Eds. Verrijn- Stuart, Olle, Sol). North Holland,
1982.

[8] A.C. Bloesch, T. Halpin, “ConQuer: a Conceptual Query Language”, In
Proceedings of ER96: 15th International Conference on Conceptual Mod-
eling, Springer LNCS, no. 1157, pp. 121-33, 1996.

[9] STARLab VUB, The DOGMA project, 2003
http://www.starlab.vub.ac.be/research/dogma.htm

[10] J. Demey, “Modeling DOGMA Ontologies and their Commitments”, licen-
ciaatsthesis, STARLab, Vrije Universiteit Brussel, 2002.

[11] J. Demey, M. Jarrar, R. Meersman, “A Conceptual Markup Language that
supports interoperability between Business Rule modeling systems”, In Pro-
ceedings of CoopIS 02: the Tenth International Conference on Cooperative
Information Systems, Lecture Notes in Computer Science, Springer-Verlag,
2002.

[12] J. De Bo, P. Spyns, “Multilingual ontology engineering in a refined DOGMA
framework”, Technical Report STAR-2003-13, 2003.

47

BIBLIOGRAPHY 48

[13] J.C. Giarratano, “CLIPS User’s Guide version 6.20”,
http://www.ghg.net/clips/download/documentation/, 2002.

[14] Jess: the Expert System Shell for the Java Platform
http://herzberg.ca.sandia.gov/jess/

[15] C.L. Forgy, “Rete: a fast algorithm for the many pattern/many object pat-
tern match problem”, Artificial Intelligence Vol. 19, pp.17-37, 1982.

[16] Haley Rule Engines
http://www.haley.com

[17] Cerebra Servertm

http://www.networkinference.com

[18] K. Baclawski, M. M. Kokar, R. Waldinger, P. A. Kogut, “Consistency
Checking of Semantic Web Ontologies”, In Proceedings of the first Inter-
national Semantic Web Conference 2002, Sardinia, Italia, 2002.

[19] E. Franconi, Gary Ng, “The i·com Tool for Intelligent Conceptual Mod-
elling”, In Proceedings of 7th International Workshop on Knowledge Rep-
resentation meets Databases (KRDB’00), Berlin, Germany, 2000.

[20] B.N. Grosof, M.D Gandhe, T.W. Finin, “SweetJess: Translating Daml-
RuleML to Jess”, In Proceedings of International Workshop on Rule
Markup Languages for Business Rules on the Semantic Web, held at First
International Semantic Web Conference, 2002.

[21] J. Kopena, W.C. Regli, “DAMLJessKB: A Tool for Reasoning with the
Semantic Web”, Drexel University Philadelphia, 2002.

[22] I. Horrocks, “Using an Expressive Description Logic: FaCT or Fiction?”,
In Proceedings of the Sixth International Conference on the Principles of
Knowledge Representation and Reasoning (KR-98), 1998.

[23] RACER: Renamed ABox and Concept Expression Reasoner, 2003
http://www.fh-wedel.de/∼mo/racer/

[24] V. Haarslev, R. Möller, “Consistency Testing: The RACE Experience”, In
Proceedings TABLEAUX’2000, Springer-Verlag, 2000.

[25] V. Haarslev, R. Möller, “RACER System Description”, In Proceedings of
the International Joint Conference on Automated Reasoning, IJCAR’2001,
2001.

[26] V. Haarslev, R. Möller, “High Performance Reasoning with Very Large
Knowledge Bases”, In Proceedings of the International Workshop in De-
scription Logics 2000 (DL2000), Aachen, Germany, 2000.

[27] V. Haarslev, R. Möller, “RACER Users Guide and Reference Manual Ver-
sion 1.7.6”, 2002.

[28] R. Cornet, RICE (Racer Interactive Client Environment) - Download page
http://www.b1g-systems.com/ronald/rice/

BIBLIOGRAPHY 49

[29] D.L. McGuinness, “Explaining Reasoning in Description Logics”, PH.D.
Thesis, State University of New Jersey, 1996.

[30] D.L. McGuinness, A.T. Borgida, “Explaining Subsumption in Description
Logics”, In Proceedings of the 14th International Joint Conference on Ar-
tificial Intelligence, IJCAI’95, pages 816–821, Montreal, Canada, 1995.

[31] F. Baader, “Description Logic Terminology”, In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages
485-495. Cambridge University Press, 2003.

[32] M. Buchheit, F.M. Donini, A. Schaerf, “Decidable Reasoning in Termi-
nological Knowledge Representation Systems”, Research Report RR-93-
10, Deutsches Forschungszentrum fur Kunstliche Intelligenz, Saarbrucken,
Germany, 1993.

[33] I. Horrocks, U. Sattler, S. Tobies, “Practical Reasoning for Expressive De-
scription Logics”, In Proceedings of LPAR’99, LNCS, Tbilisi, Georgia,
1999.

[34] I. Horrocks, “Reasoning with Expressive Description Logics: Theory and
Practice”, In Proceedings of the 18th International Conference on Auto-
mated Deduction (CADE 2002), 2002.

[35] I. Horrocks, U. Sattler, S. Tobies, “Reasoning with individuals for the de-
scription logic SHIQ”, In Proceedings of the 17th International Conference
on Automated Deduction (CADE-17), number 1831 in Lecture Notes In
Artificial Intelligence, pages 482-496, Springer-Verlag, 2000.

[36] A.Y. Levy, M. Rousset, “CARIN: A representation language combining
Horn rules and description logics”, In Proceedings of the 12th European
Conference on Artificial Intelligence (ECAI-96), pages 323–327, 1996.

[37] F. Rossi, “Constraint Logic Programming”, In Proceedings of
ERCIM/Compulog Net workshop on constraints, Springer, LNAI
1865, 2000.

[38] E. Gelle, R. Weigel, “Interactive Configuration using Constraint Satisfac-
tion Techniques”, Second International Conference on Practical Applica-
tion of Constraint Technology, PACT-96, London, UK, 1996.

[39] B.N. Grosof, I. Horrocks, “Description Logic Programs: Combining Logic
Programs with Description Logic”, In Proceedings of the Twelfth Interna-
tional World Wide Web Conference (WWW 2003), 2003. (To appear)

[40] I. Horrocks, U. Sattler, “Ontology Reasoning in the SHOQ Description
Logic”, In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, 2001.

[41] C. Lutz, “Adding Numbers to the SHIQ Description Logic - First Results”,
In Proceedings of the Eighth International Conference on Principles of
Knowledge Representation and Reasoning (KR2002), Morgan Kaufman,
2002.

BIBLIOGRAPHY 50

[42] A. Artale, E. Franconi, “A Survey of Temporal Extensions of Description
Logics”, In Annals of Mathematics and Artificial Intelligence, 30(1-4), 2001.

[43] G. Alsa, C. Baral, “Reasoning in Description Logic Using Declarative Logic
Programming”, In Proceedings of AAAI, 2002.

[44] N. Guarino, M. Carrara, P. Giaretta, “Formalizing Ontological Commit-
ments”, In Proceedings of AAAI, 1994.

[45] D. Miller, “A Logic Programming Language with Lambda-Abstraction,
Function Variables, and Simple Unification”, Journal of Logic and Com-
putation, 1(4):497–536, 1991.

[46] E. Gat, “Lisp as an Alternative to Java”, Intelligence, pp. 21-24, 2000.

[47] M.E. Stickel, R.J. Waldinger, V.K. Chaudhri, “A Guide to SNARK”, 2000.

[48] A. Waterson, A. Preece, “Verifying Ontological Commitment in
Knowledge-Based Systems”. In Knowledge-Based Systems, 12, 45-54, 1999.

[49] DAML+OIL language, March 2001,
http://www.daml.org/2001/03/daml+oil-index.html

[50] Resource Description Framework Schema
http://www.w3.org/TR/rdf-schema/

[51] Rule Markup Language
http://www.dfki.uni-kl.de/ruleml/

Appendix A

Description Logic: SHIQ
Semantics

Construct Syntax Semantics

Top > ∆I

Bottom ⊥ ∅
Concept C {a ∈ ∆I | a ∈ CI}
Intersection C1 u C2 CI1 ∩ CI2
Union C1 t C2 CI1 ∪ CI2
Negation ¬C ∆I \ CI

Value restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
Existential quantification ∃R {a ∈ ∆I | ∃b.(a, b) ∈ RI}
Existential restriction ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Number restriction
(6 n R) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI}| 6 n}
(> n R) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI}| > n}
(= n R) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI | = n}

Quantified number restriction
(6 n R.C) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| 6 n}
(> n R.C) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| > n}
(= n R.C) {a ∈ ∆I ||{b ∈ ∆I | (a, b) ∈ RI ∧ b ∈ CI}| = n}

Role hierarchy R1 ⊆ R2 {a ∈ ∆I | ∀b.(a, b) ∈ RI1 → (a, b) ∈ RI2 }
Transitive roles R ⊆ R+ RI ⊆ ∆I ×∆I

Table A.1: Semantics of SHIQ concept & role constructors

An interpretation I consists of a non-empty set ∆I (the domain of the
interpretation) and an interpretation function, which assigns to every atomic
concept C a set CI and to every atomic role R a binary relation RI ⊆ ∆I×∆I .

51

Appendix B

Translation of Binary ORM
into SIQ

Binary ORM Abstract SIQ Syntax

DOGMA.Lexon{Concept1 role [co-role] Concept2} Concept1, Concept2, role
co-role ≡ role−

DOGMA.Lexon{Concept2 is-a [subsumes] Concept1} Concept2 v Concept1
ORM.InternalUniqueness{Concept1 role Concept2} Concept1 v ≤1 role.Concept2
ORM.Mandatory{Concept1 role Concept2} Concept1 v ≥ 1 role.Concept2
ORM.Mandat.IntUniqueness{Concept1 role Concept2} Concept1 v = 1 role.Concept2
ORM.Frequency{≤ n, Concept1 role Concept2} Concept1 v ≤ n role.Concept2
ORM.Frequency{≥ n, Concept1 role Concept2} Concept1 v ≥ n role.Concept2
ORM.Frequency{= n, Concept1 role Concept2} Concept1 v = n role.Concept2
ORM.Subset{Concept1 role1 Concept2} Concept1 u ∃role1.concept2

>{Concept1 role2 Concept3} v Concept1 u ∃role2.concept3
ORM.Equality{Concept1 role1 Concept2} (Concept1 u ∃role1.concept2

={Concept1 role2 Concept3} v Concept1 u ∃role2.concept3)
u (Concept1 u ∃role2.concept3
v Concept1 u ∃role1.concept2)

ORM.Exclusion{Concept1 role1 Concept2} ∃role1.Concept2
#{Concept1 role2 Concept3} v ¬∃role2.Concept3

ORM.Value{Concepti, j..k} Concept1 v (∃Concepti.minj u ∃Concepti.maxk)
ORM.Frequency{≤ #n, Concept1} For all mandatory roles rolem

connecting Conceptm to Concept1:

Conceptm v ≤ #n role−1
m .Concept1

ORM.ExternalUniqueness{Concept1 role Concept2, N/A
Concept3 role Concept2}

ORM.IntMNUniqueness{Concept1 role co-role Concept2} N/A

Table B.1: Binary ORM translated to SIQ

The notation used in the first column is a formal notation for DOGMA
lexons and ORM constraints which should be straightforward to apprehend.

The concrete SIQ syntax on the right provides a formal semantics for ORM
constraints which has yet not been written down in any existing reference work
to our knowing.
Role hierarchies (denoted by the H constructor symbol) are non-existent inside
DOGMA: it is impossible to state e.g. that the role is father is a subrole of
the role is parent, restricting its range.

52

APPENDIX B. TRANSLATION OF BINARY ORM INTO SIQ 53

Note that this is a mapping solely for binary ORM, which implies that n-ary
roles and nested roles (also called objectifications) are not considered here.

